3. Data Models for Engineering Data

Conventional and Specific Ways to
Describe Engineering Data

Overview

e Conventional Models
— OQverview of Data Models

— Logical Models
e Databases and the Relational Data Model
e Object-oriented Data Models
e Semi-structured Data Models
— Conceptual Models
e The Entity Relationship Model (ER)
e The Unified Modeling Language (UML)

e Engineering Data Models

— The Standard for the Exchange of Product Model Data (STEP)
e STEP EXPRESS as a modeling language
e EXPRESS-G as a graphical/conceptual model

— STEP files

Schallehn: Data Management for Engineering Applications

Reminder: Data Model

A data model is a model that describes in an abstract way how data
is represented in an information system or a database management
system.

e A data model defines syntax and semantics, i.e.
— How can data be structured (syntax)
— What does this structure mean (semantics)

e Very generic term for many applications

— Programming languages have their data models (e.g. C++ and Java have
object-oriented data models)

— Conceptual design methods (e.g. ER, UML) represent a data model
— File formats either apply a data model (e.g. XML) or implement their own
— Database management systems implement data(base) models

Schallehn: Data Management for Engineering Applications

Information System Desigh Phases

Conceptual Models:
ER, UML, EXPRESS-G

Logical Models:

Relational, Object-oriented,
% / Document-oriented, EXPRESS

Physical Models:

% SQL-92, SQL:2011,
2. XML, JSON, C++,

o

Schallehn: Data Management for Engineering Applications

Types of Data Models

e Conceptual Models

— Describing the concepts of the given Universe of Discourse and their
relationships

— Information requirements of system/users
— Independent of final structure implementation
— Often using graphical notation

e Logical Models

— Describes the logical structure of information (data) in the system to
be developed

— Independent of specific (database) systems or (programming)
languages

e Physical/Implementation Models

— Describes all details of how information is represented

Schallehn: Data Management for Engineering Applications

The Relational Model (RM)

e Developed since early 1970s based on mathematical theory of
relations and operations performed on them (relational
algebra)

e SQL (Structured Query Language) as a strong standard to
access relational databases

e Relational Database Management Systems (RDBMS)
implement RM, most often based on SQL

e RDBMS are state of the art for database storage

Schallehn: Data Management for Engineering Applications

SQL/RM: Basic Concepts

e Data is stored as rows/records (tuples*) in tables
(relations) with values for each column (attribute)

e Rows can be identified by special columns called
primary keys, for which a unique value must exist

e Foreign keys can be used to establish connections
across data in different tables

e Constraints can be specified to grant consistency

* Terms in brackets relate to
relational theory/mathematics

Schallehn: Data Management for Engineering Applications

SQL/RM: Simple Example

PartiD Name Weight | SupplieriD

GT-876-140425 | Plunger | 143.5 1

FT-852-130707 | Shaft 77.0 3
FT-855-140809 | Bolt 15.7 1
1T-707-778 Case 22.8 2
SupplierID | Name Location
1 Reed & Sons New York
2 CaseStudio Boston

3 ToolTime Austin

Schallehn: Data Management for Engineering Applications

SQL/RM: Tables

Column

1

Table < FT-852-130707

PartID Name Weight | SupplierlD_
GT-876-140425 | Plunger | 143.5 1

Shaft 77.0 3
FT-855-140809 | Bolt 15.7 1
TT-707-778 Case 22.8 2

Schallehn: Data Management for Engineering Applications

SQL/RM: Primary Keys

Primary Key

1

|

|

Primary Key Value <—{FT-855-140809

PartIiD Name Weight _SPPPI_ie_r_IQ
GT-876-140425 | Plunger | 143.5 1
FT-852-130707 | Shaft 77.0 3

Bolt 15.7 1
1T-707-778 Case 22.8 2

Schallehn: Data Management for Engineering Applications

SQL/RM: Foreign Keys

Foreign Key
| T |
PartiD Name Weight | SupplierlD
GT-876-140425 | Plunger |143.5 (|1)—
FT-852-130707 | Shaft 77.0 /3\
FT-855-140809 | Bolt 157 (1)
1T-707-778 Case 22.8 2
SupplierID | Name Location
T) Reed & Sons New York
2 CaseStudio Boston
3 ToolTime Austin

Schallehn: Data Management for Engineering Applications

The Structured Query Language (SQL)

e Language to access databases structured according
to Relational Model
— Developed based on RM
— Introduces some minor differences to RM
— Not a programming language
e Consists of several parts, most importantly:
— Actual query language to read data

— Data Definition Language (DDL) to create (empty)
databases, tables, etc.

— Data Manipulation Language (DML) to insert, modify and
delete data

Schallehn: Data Management for Engineering Applications

SQL: Query Language

SELECT <columns>
FROM <tables>
WHERE <condition>;

e Declarative language:

— Result is described, not how it is computed
— Actual execution can be optimized by DBMS

e Typical structure: SFW-block (SELECT-FROM-WHERE)
e |nput as well as result are always tables

e Used from programming languages via standardized or

proprietary application programming interfaces (ODBC, JDBC,
etc.)

Schallehn: Data Management for Engineering Applications

SQL: Query Language Example 1

SELECT name, weight
FROM part
WHERE weight > 50;

_ Name Weight
K > Plunger | 143.5

Shaft 77.0

Schallehn: Data Management for Engineering Applications

SQL: Query Language Example 2

SELECT p.name, s.name

FROM part p, supplier s

WHERE p.supplierid = s.supplierid
AND s.name LIKE ‘Reed3’;

Part.Name Supplier.Name
> Plunger Reed & Sons

Bolt Reed & Sons

Schallehn: Data Management for Engineering Applications

SQL: Data Definition Language

CREATE TABLE part (

partid INTEGER PRIMARY KEY,
name VARCHAR (50) NOT NULL,
weight DECIMAL (10,2),

supplierid INTEGER REFERENCES supplier (supplierid)
)

e DDL= Part of SQL language used to define schema elements
(tables, constraints, views, etc.)

Schallehn: Data Management for Engineering Applications

SQL: Data Manipulation Language (DDL)

INSERT INTO supplier VALUES (4,’Rex & Smith’, ‘Baltimore’);

UPDATE supplier
SET location=‘Woburn’
WHERE supplierid=2;

DELETE FROM part
WHERE supplierid=1;

e DML = Part of SQL language to insert, modify and delete data

Schallehn: Data Management for Engineering Applications

Engineering and RDBMS

e RDBMS often used for

— Product Lifecycle Management (Product Data
Management, Engineering Data Management)

— Applications for generic tasks, e.g. Enterprise Resource
Planning, Workflow Management Systems, Supply Chain
Management, etc.

e RDBMS less often or not used for
— Direct structured storage of product definition data

e Details in Section 4

Schallehn: Data Management for Engineering Applications

Object-oriented Data Models

e Enhanced semantic modeling
— Allows more flexible and re-usable definitions
— More semantic concepts add complexity to data model/languages

e Developed gradually until major breakthrough in 1980s

e Similar concepts of data modeling applied for numerous
application fields in computer science, e.g.
— Object-oriented Analysis and Design (e.g. UML)
— Object-oriented Programming (e.g. C++, Java)
— Object-oriented Databases (e.g. db4o, Versant)
— Object-relational Databases (SQL since SQL:1999)
— Object-oriented User Interfaces

Schallehn: Data Management for Engineering Applications

OO: Enhanced Semantic Modeling

e Objects as instances (data) of classes

e User-defined Classes as definitions (schema) of

— The structure of objects with Attributes and Relationships
— The behavior of objects by Methods (class functions)

e Encapsulation to differentiate between appearance to use
user of objects of classes (interface) and their internal
structure and behavior (implementation)

e Re-usability of definitions by Specialization among classes

— Inheritance: specialized classes (subclasses) also posses the attributes,
relationships and methods of the classes they were derived from
(superclasses)

— Polymorphism: objects of a subclass are also objects of the superclass
and can be used accordingly

Schallehn: Data Management for Engineering Applications

OO0O: Attributes

e Attributes represent properties of class Part
objects of a class, for which an {

object carries concrete values .
] string name;
e Defined based on data types

int version 1d;
— Basic data types defined of Date lastModified;
implementation model (e.g.
int, float, char inC++) };

— Pre-defined complex types (e.g.
stringin C++) This and all following

— User-defined complex types (e.g. examples on OO dre in C++

classes for Address, Date,
Coordinates, etc.)

Schallehn: Data Management for Engineering Applications

O0: Methods

e Specification of behavior of objects in
terms of functions on that object
e Interface (Signature, declaration):
— Specifies how the method can be used
— External view of the method
— Name, parameters and return value
e |Implementation (definition):

— Provides executable source code for
method

— Internal view of the methode

e Interface and implementation
may be separated (e.g. in C++)

e Constructors as special methods to
create objects of that class

Schallehn: Data Management for Engineering Applications

class Part

{

Part (string n);
void createNewVersion () ;

b

Part::Part (string n)

{
name = n;
version id = 1;

}

void Part::createNewVersion ()

{
Version_id++;

}

OO: Relationships

e 1:1 and N:1 Relationships
between different objects
most often represented by
pointers (physical address,
e.g. C++) or references
(logical, e.g. Java)

e Bidirectional, 1:N and N:M
relationships require
additional type construction

Schallehn: Data Management for Engineering Applications

class Part

{

Engineer* responsibleEngineer;

class Engineer

{

string name;
string department;
set<Part*> designedParts;

OO: Encapsulation

e External (interface) and
internal (implementation)
structure of class maybe
specified

e Typically access modifiers
such as

— Public: attribute or method
accessible from everywhere

— Private: only accessible within
methods of this class

— Protected: accessible within
this class and in subclasses

— Package (Java only): within
this library

Schallehn: Data Management for Engineering Applications

class Part

{

b

public:

Part (string n);

void createNewVersion() ;
private:

string name;

int version id;

Date lastModified;

Engineer*

responsibleEngineer;

OO: Objects and Classes

e QObjects of classes

Schallehn: Data Management for Engineering Applications

Defined within source code,
i.e. function and method
implementation

Notion class implies set of
objects conforming to the
defined structure

Carry values for attributes

Methods are called on objects,
e.g. using notations like
obj.method () or
obj->method ()

class Part
{
public:
Part (string n);
void createNewVersion () ;
private:
string name;
int version id;

}s

// Main program

int main ()

{
Part* objl = new Part ("Wheel");
Part* obj2 = new Part ("Hub");

objl->createNewVersion() ;

return 0;

OO: Specilization

e Relationship between classes to
model more specific subsets of
objects with additional properties
and methods

e Inheritance: attributes and
methods defined in superclass
are also defined in subclass (also
referred to as subtyping)

e Polymorphism: wherever objects
of a superclass can be used,
object of any subclass of it can be
used, too

Schallehn: Data Management for Engineering Applications

class Part
{
public:
Part (string n);
vold createNewVersion () ;
private:
string name;
int version id;
Date lastModified;
Engineer* responsibleEngineer;

class ManufacturedPart

{

: public Part

private:
string manufacturingDepartment;

class PurchasedPart

{

: public Part

private:
string vendor;

}s

OO and Engineering Data

Rich semantic modeling suitable to support complex data
structures

Typical implementation model of engineering applications
— Conceptual Modeling
— Programming and Development
— File Storage

Some concepts integrated with STEP data models EXPRESS
and EXPRESS-G
— Specialization
— Relationships

Object-oriented and Object-Relational Databases suitable but
not commonly used for Engineering Data

Schallehn: Data Management for Engineering Applications

XML

e eXtensible Markup Language
— Hierarchical structure of nested elements (tags)
— Elements may have attributes
— Actual data on the leave level
— Mix of content (data) and description (schema, metadata)

e Developed based on SGML (document processing) to exchange any kind of
data on the Web

e Inspired by HTML (also based on SGML), which is only useful to exchange
documents

e (Can be considered a neutral text format for files

e Application-specific schemas of valid documents can be defined by
Document Type Definitions (DTD) or XML Shema (XSD)

e Standard software/libraries for XML processing publically available

Schallehn: Data Management for Engineering Applications

XML Example: EAGLE .sch File

<schematic>
<parts>
<part name="SUPPLY1" deviceset="GND" device=""/>
<part name="C1l" deviceset="C-EU" device="050-024X044" value="22pF"/>
</parts>
<sheets>
<sheet>
<instances> <!-- Positions the parts on the board. E. g.: -->
<instance part="SUPPLY1" gate="GND" x="132.08" y="187.96"/>
<instance part="C1l" x="-50.8" y="200.66" rot="R270"/>
</instances>
<nets>
<net name="N$1" class="0">
<segment>
<wire x1="9.44" y1="19.04" x2="8.9" y2="19.04" width="0.15"/>
<wire x1="8.9" yl1="19.04" x2="8.9" y2="20.66" width="0.15"/>
<wire x1="8.9" yl="20.66" x2="2.4" y2="20.66" width="0.15"/>
<pinref part="C1l" pin="5"/>
<pinref part="SUPPLY1" pin="1"/>
</segment>
</net>
</nets>
</sheet>
</sheets>
</schematic> [Source: Philipp Ludwig]

XML Structure and Data Model

e Markup language intended to describe structure within documents and
document collections in files or databases

e Data logically represented according to Document Object Model (DOM)
as hierarchy/tree of

e Element nodes (labeled internal nodes)

e One labeled root node (represents document content)

e Text nodes as leaf nodes represent actual data

e Attribute nodes as special sub-nodes with a child text node

e Structureis
e Well-formed: conforms to general XML rules

e Valid: possible nesting of elements, attributes, etc. conform to a
schema defined as Document Type Definition (DTD) or XML
Schema (XS)

Schallehn: Data Management for Engineering Applications

XML DOM Example

schematic
parts sheets
part part
name / deviceset device
text

77 S UPP L Yl 77 4 GND 77 77

Schallehn: Data Management for Engineering Applications

Element node

@ Attribute node

©® Textnode

XML Example: eagle.dtd

e DTD used for schema definition, i.e. valid .sch files

e Small excerpt of eagle.dtd (publically available):

variantdefs?, classes?,
<!ATTLIST schematic
xreflabel %String; #IMPLIED
xrefpart %$String; #IMPLIED
>

<!ELEMENT part (attribute*, variant*)>
<!ATTLIST part
name %String; #REQUIRED
library %String; #REQUIRED
deviceset %String; #REQUIRED
device %$String; #REQUIRED
technology %$String; ""
value %$String; #IMPLIED
>

<!ELEMENT schematic (description?, libraries?, attributes?,

parts?, sheets?, errors?)>

XML in Engineering

e Many formats based on XML
e Especially intended for data exchange

e Some examples:
— Collada for interactive 3D applications

— 3DXML for the exchange of geometrical data

— EAGLE board (BRD) and schema (SCH) files for electronic
circuits (see above)

— CAEX general purpose language for the exchange of
engineering data by European consortium

— AutomationML for plant engineering

Schallehn: Data Management for Engineering Applications

JSON

e JavaScript Object Notation

e More recent, “lightweight” {
alternative to XML A o
. "age": 25,
e Also provides Schema honeN et
definition language [{
e Developed for Web and | fmumoexT T2IZ 59571234
Cloud applications (
. . "type": "faX",
e In Engineering: "number": "646 555-4567"
}
— No major usage]
— Current development of CAD }

JSON export to support web-

based interoperability Based on [http://en.wikipedia.org/wiki/JSON]

Schallehn: Data Management for Engineering Applications

Conceptual Models

e Used during Conceptual Design
— Early development phase
— Independent of implementation
— Focus on completeness and soundness description of universe of
discourse
e Typically using graphical notation

e Covered here:

— General purpose models:
e Entity Relations Model (ERM or ER Model)
e Unified Modeling Language (UML)

— Specialized model for application areas
e EXPRESS-G for engineering data

Schallehn: Data Management for Engineering Applications

Focus of Conceptual Models

Conceptual Models:
ER, UML, EXPRESS-G
/\

Logical Models:
Relational, Object-oriented,
/ Document-oriented, EXPRESS

Physical Models:

% SQL-92, SQL:2011,

C++, Java

s |

Schallehn: Data Management for Engineering Applications

The Entity Relationship (ER) Model

e Developed by Peter Chen in 1976
e Commonly used for design of relational databases
e Set of rules for mapping ER concepts to tables

e Several derivatives with more efficient notation, e.g.

— ldeflx
— Crows foot/Barker’s notation

e Several extension, to introduce more powerful (e.g.
object-oriented) concepts

Schallehn: Data Management for Engineering Applications

ER Model: Basic Concepts

Supplied
by

—(M) —(SupplierlD>
| Giome) (o)
—(Weight) —(Location)

e Entity types (rectangles): represent sets of real-world entities with
common attributes

Part

Supplier

e Attributes (ovals or rounded boxes): hold property values of entities, keys
(underlined) as identifying attributes

e Relationship types (diamond shaped boxes): possible relationship
between instances of entity types

Schallehn: Data Management for Engineering Applications

ER Concepts: Cardinalities /1

1,* 1,1
Teacher 1] offers [11] Lecture
Equivalent to:
* 1
Teacher offers Lecture

e Cardinalities: indicate how often instances of entity types might
participate in a certain relations

e Min/max cardinalities or, alternatively but less precise, only maximum
value

e Optional relationships: minimum cardinality is zero

e 1:1, 1:N or N:M relationships (example above: 1:N relationship) as typical
classes of relationships based on cardinalities

Schallehn: Data Management for Engineering Applications

ER Concepts: Cardinalities /2

Student attends Lecture

Equivalent to:

[0,*] [0,%]
Student attends Lecture
or
* *
Student attends Lecture

e Example above: N:M relationship

e Unspecified cardinalities indicate default case of optional N:M
relationship

Schallehn: Data Management for Engineering Applications

ER Concepts: Further Relationships

Building
[0,1] |
Person
[0,1]

[1,1]

Room
Self-referential relationships Relationships expressing
on the type-level existential dependencies
(weak entity types)

Schallehn: Data Management for Engineering Applications

Teacher

>

Lecture

Room

Relationships between more
than two entity types (n-ary
relationships)

Mapping ER Schema to Relational

e Simple rules
— Entity types map to tables
— Attributes map to columns
— Key attributes map to primary key columns

— N:M relationships map to tables with keys of participating entity types
as columns

— 1:1 relationships
e Non-optional: entity types and relationship can be merged into one table
e Optional: map to table with keys of participating entity types as columns
— 1:N relationships
e Non-optional: entity types and relationship can be merged into one table
e Optional: map to table with keys of participating entity types as columns

e Some variance allowed to improve performance, simplicity,
etc.

Schallehn: Data Management for Engineering Applications

The Unified Modeling Language (UML)

e Object-oriented modeling language/model for general
software engineering

e Developed in mid 1990s as a combination of several
languages/conceptual models

e Contains several diagram types for describing different
aspects of structure and behavior
— Class diagrams
— Object diagrams
— State diagrams
— Sequence diagrams
— Etc.

e Class diagrams useful to describe database or file schemas

Schallehn: Data Management for Engineering Applications

UML Class Diagrams

e Cover basic data model aspects such as ER Model
— Classes entity types
— Attributes and key attributes for classes
— Relationships with cardinalities

e |n addition, object-oriented concepts:
— Specialization and inheritance

— Encapsulation
— Methods

Schallehn: Data Management for Engineering Applications

UML Class Diagram Example

Employee
-firsthame

Drawing -lastname
-name
-status 4
+create()
+check() -modified by
+edit() Designer
+approve()) dormain Inspector
+reject()

* -approved by

1

Schallehn: Data Management for Engineering Applications

STEP

e STandard for the Exchange of Product model data
e Developed since 1984 by international consortium

e Standardized since 1990s as ISO 10303
e Contains

— General methods for describing data and schemas
— Definitions of generic file formats
— Application-specific methods for engineering domains

Schallehn: Data Management for Engineering Applications

STEP Parts relevant for Data Modeling

e Parts most relevant for data modeling

10303-1x
e 10303-11

10303-2x

e 10303-21

e 10303-22

e 10303-23, 24 ...

e 10303-28
Further 10303-XX

e 10303-42

e 10303-52
10303-2XX

Description Methods, e.g.

EXPRESS and EXPRESS-G
Implementation Methods, e.g.

STEP files

Standard Data Access Interface SDAI
SDAI C++, C etc. Language Bindings

STEP XML

Integrated generic resources
Geometric and topological representation

Mesh-based topology
Application Protocols

Schallehn: Data Management for Engineering Applications

EXPRESS and EXPRESS-G

e Represent Data Model of STEP Standard
e EXPRESS: textual notation

— Formal notation to describe data structures

e EXPRESS-G: graphical notation
— Easy to understand

— Most concepts of EXPRESSED can be described 1:1, except
for complex constraints

e For storage/implementation mapped to file format
(10303-21) or concrete language (10303-22 ff.)

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Basic Data Types

BINARY

BOOLEAN

LOGICAL

INTEGER

NUMBER

STRING

Schallehn: Data Management for Engineering Applications

REAL

EXPRESS-G: Entity Types and Attributes /1

STRING
department
Part INTEGER
last_modified e i
Date '

Schallehn: Data Management for Engineering Applications

Entities and Attributes (Remarks)

e Entity types as plain rectangles

e Attributes as relationships to basic types or defined
types

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Defined Types

INTEGER
INTEGER

O<day<32

O <month<13

0 <year INTEGER

Schallehn: Data Management for Engineering Applications

EXPRESS: Entity Types and Attributes /1

SCHEMA Parts;

TYPE Date
day : INTEGER;
month : INTEGER;
year : INTEGER;
WHERE

WR1l: (SELF\day > 0) AND (SELF\day < 32);
WR1l: (SELF\month > 0) AND (SELF\month < 13);
WR1l: (SELF\year > 0);

END TYPE;

ENTITY Part

name : UNIQUE STRING;
department : OPTIONAL INTEGER;
last modified : Date;

END ENTITY;

END SCHEMA;

Schallehn: Data Management for Engineering Applications

Defined Types (Remarks)

e Can be used just like basic types

e Defined as
— based on one basic or
— composed of several basic or defined types

e Constraints maybe used to
— Limit domain of values
— Specify any consistency requirement

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Enumeration Data Type

STRING

name

Engineer status | internal or

. external

S SR |

Schallehn: Data Management for Engineering Applications

EXPRESS: Enumeration Data Type

SCHEMA Parts;

ENTITY Engineer

name : STRING;

status : ENUMERATION OF (internal,external);
END ENTITY;

END SCHEMA;

Schallehn: Data Management for Engineering Applications

Enumeration Data Type (Remarks)

e Enumeration is special type for categorical attribute
e Consists of definition of small set of possible values

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Relationships

Part

responsibleEngineer

O

O

designedParts S[0:?]

versions L[1:?]

Schallehn: Data Management for Engineering Applications

Engineer

PartVersion

EXPRESS Relationships

SCHEMA Parts;

ENTITY Part

responsibleEngineer : Engineer;
versions : LIST[1:?] OF PartVersion;
END ENTITY;

ENTITY Engineer

designedParts : SET[0:?] OF Part;
END ENTITY;

END SCHEMA;

Schallehn: Data Management for Engineering Applications

Relationships (Remarks)

e Relationships between entity types are directional
e Bidirectional relationships represented as two relationships

e Multiple participation can be represented by Aggregation
types
— List (L): ordered collection
— Set (S): unordered collection without duplicates
— Bag (B) : unordered collection with duplicates
— Array (A): collection of fixed size (ordered, with duplicates)

e Cardinalities with [min:max] notation where ? indicates an
arbitrary cardinality

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Subtyping

STRING

*name

department

(ABS)Part d INTEGER

last_modified

Date

Nt A\ g

vendor
ManufacturedPart PurchasedPart d STRING

Schallehn: Data Management for Engineering Applications

EXPRESS: Subtyping

SCHEMA Parts;

ENTITY Part
ABSTRACT SUPERTYPE OF
(ONEOF (ManufacturedPart,

END ENTITY;

ENTITY MaufacturedPart
SUBTYPE OF (Part);
END ENTITY;

ENTITY PurchasedPart

SUBTYPE OF (Part);

vendor : STRING;
END ENTITY;

END SCHEMA;

PurchasedPart)) ;

Schallehn:

Data Management for Engineering Applications

Subtyping (Remarks)

* |Inheritance (supertype attributes are also defined for
subtype) and polymorphism (substitutability) are
supported

e Multiple inheritance (more than one supertype) is
possible
e |nstances may be of several subtypes at the same
time
— Can be constrained by cardinalities, e.g. ONEOF = instance
only of either one of the specified subtypes

Schallehn: Data Management for Engineering Applications

Further EXPRESS-G Constructs

e Schemas as blocks consisting of entities and relations

e Select types to represent alternatives of various (entity or
defined) types to use for relationship

e Methods according to object-oriented concepts

e Derived attributes as calculated properties

e Communication relationships to indicate interactions
e Entity and page references for complex or

Schallehn: Data Management for Engineering Applications

ISO 10303-21: STEP Files

e ASCll-based textual file format for step data

e File extensions .stp or .step for files according to
application protocols

e Commonly used for data exchange in engineering
e Typically structured according to an EXPRESS schema

e Files typically consists of
— [SO-10303-21-declaration in first line

— Short HEADER section containing metadata, including a reference to
the schema (typically STEP Application Protocol)

— DATA section with lines each representing a numbered entity instance
according to schema

Schallehn: Data Management for Engineering Applications

AP 214 EXPRESS Schema (Excerpt)

(* SCHEMA geometry schema; *)

ENTITY cartesian point
SUPERTYPE OF (ONEOF (cylindrical point, polar point, spherical point))
SUBTYPE OF (point);
coordinates : LIST [1:3] OF length measure;
END ENTITY;

[Source: steptools.com]

Schallehn: Data Management for Engineering Applications

Example AP214 .STEP File

ISO-10303-21;

HEADER;

FILE DESCRIPTION ((Yy, v Y)Y,

FILE NAME ('pumpHousing.stp', '2004-04-13T21:07:11', ('Tim Olson'), ('CADSoft Solutions
Inc'), ' ', '"ACIS 12.0', ' ');

FILE SCHEMA (('AUTOMOTIVE DESIGN { 1 0 10303 214 2 1 1}"));

ENDSEC;

DATA;

#3716 = POINT STYLE(' ', #6060, POSITIVE LENGTH MEASURE(1.00000000000000E-06), #6061);

#3717 = CARTESIAN POINT('', (-1.10591425372267, 3.05319777988191, 0.541338582677165));

#3718 = CURVE STYLE('', #6062, POSITIVE LENGTH MEASURE(1.00000000000000E-06), #6063);
#3719 = LINE('', #6064, #6065);
#3720 = CURVE STYLE('', #6066, POSITIVE LENGTH MEASURE(1.00000000000000E-06), #6067);

#3721 = CIRCLE('', #6068, 1.75849340964528);
#3722 = CURVE STYLE('', #6069, POSITIVE LENGTH MEASURE(1.00000000000000E-06), #6070);
#3723 = CIRCLE('', #6071, 0.540114611464642);

#3724 = SURFACE STYLE USAGE(.BOTH., #6072);
#3725 = FACE OUTER BOUND('', #6073, .T.);
ENDSEC;

END-ISO-10303-21;

[Source: Paul Bourke
http://paulbourke.net/dataformats/]

Schallehn: Data Management for Engineering Applications

STEP SDAI

e Standard Data Access Interface 1SO 10303-22 defines
standard bindings to languages (C, C++, Java) for STEP data
access

e Similar to an APl for an RDBMS (ODBC, JDBC) or ODBMS
defines basic functionality such as
— Sessions
— Database connectivity
— Data dictionary

e Defines mappings of EXPRESS types to language constructs, e.

e Not specific to geometrical data - used more often for other
applications

Schallehn: Data Management for Engineering Applications

Further Readings

[1] Ramez Elmasri, Shamkant B. Navathe:
Fundamentals of Database Systems.
Addison-Wesley

[2] OwenJon: STEP — An Introduction. Information
Geometers, 1997

[3] Douglas A. Schenck, Peter R. Wilson: Information
Modeling the EXPRESS Way. Oxford Press, 1993.

Schallehn: Data Management for Engineering Applications

